Visual landmarks sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal cortex
نویسندگان
چکیده
Neurons of the medial entorhinal cortex (MEC) provide spatial representations critical for navigation. In this network, the periodic firing fields of grid cells act as a metric element for position. The location of the grid firing fields depends on interactions between self-motion information, geometrical properties of the environment and nonmetric contextual cues. Here, we test whether visual information, including nonmetric contextual cues, also regulates the firing rate of MEC neurons. Removal of visual landmarks caused a profound impairment in grid cell periodicity. Moreover, the speed code of MEC neurons changed in darkness and the activity of border cells became less confined to environmental boundaries. Half of the MEC neurons changed their firing rate in darkness. Manipulations of nonmetric visual cues that left the boundaries of a 1D environment in place caused rate changes in grid cells. These findings reveal context specificity in the rate code of MEC neurons.
منابع مشابه
مدل شبکه ی عصبی از نگاشت سلولهای شبکه به سلولهای مکانی
Abstract: Medial entorhinal cortex is known to be the hub of a brain system for navigation and spatial representation. These cells increase firing frequency at multiple regions in the environment, arranged in regular triangular grids. Each cell has some properties including spacing, orientation, and phase shift of the nodes of its grid. Entorhinal cortex is commonly perceived to be the major in...
متن کاملPyramidal and Stellate Cell Specificity of Grid and Border Representations in Layer 2 of Medial Entorhinal Cortex
In medial entorhinal cortex, layer 2 principal cells divide into pyramidal neurons (mostly calbindin positive) and dentate gyrus-projecting stellate cells (mostly calbindin negative). We juxtacellularly labeled layer 2 neurons in freely moving animals, but small sample size prevented establishing unequivocal structure-function relationships. We show, however, that spike locking to theta oscilla...
متن کاملCohesiveness of spatial and directional representations recorded from neural ensembles in the anterior thalamus, parasubiculum, medial entorhinal cortex, and hippocampus.
Anatomical and physiological evidence suggests that hippocampal place cells derive their spatial firing properties from the medial entorhinal cortex (MEC) and other parahippocampal areas that send spatial and directional input to the MEC. MEC neurons fire in a precise, geometric pattern, forming a hexagonal grid that tessellates the surface of environments. Similar to place cells and head direc...
متن کاملDifferential Expression and Cell-Type Specificity of Perineuronal Nets in Hippocampus, Medial Entorhinal Cortex, and Visual Cortex Examined in the Rat and Mouse
Perineuronal nets (PNNs) are specialized extracellular matrix (ECM) structures that condense around the soma and proximal dendrites of subpopulations of neurons. Emerging evidence suggests that they are involved in regulating brain plasticity. However, the expression of PNNs varies between and within brain areas. A lack of quantitative studies describing the distribution and cell-specificity of...
متن کاملHow to build a grid cell
Neurons in the medial entorhinal cortex fire action potentials at regular spatial intervals, creating a striking grid-like pattern of spike rates spanning the whole environment of a navigating animal. This remarkable spatial code may represent a neural map for path integration. Recent advances using patch-clamp recordings from entorhinal cortex neurons in vitro and in vivo have revealed how the...
متن کامل